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Our goal today is to understand `-adic Galois representations a bit better, mostly by relating
them to representations appearing in geometry. First we’ll deal with Galois groups of finite fields,
where we can say quite a lot, and then we’ll deal with Galois groups of local fields, which is
harder. We follow Section 1 of Fontaine and Ouyang’s book Theory of p-adic Galois representations.

1 Examples

Let K be a field, and GK = Gal(Ksep/K). An `-adic representation of GK is simply a continuous
representation GK → GLn Q`. These representations are much richer than complex Galois repre-
sentations, because the topologies are more compatible. For example, the image of any continuous
representation with complex coefficients must be finite, because GK is profinite; but this is not at
all true for GLn Q`, which has many more profinite subgroups.

A wealth of examples of `-adic representations of GK is given by Tate modules of commutative
algebraic groups.

Example. First we consider the Tate module of the multiplicative group Gm. For a prime ` dif-
ferent from the characteristic of K, the group of `n roots of unity in Ksep is µ`n(K) = Z/`n. The
`-powering maps µ`n+1(Ksep) → µ`n(Ksep) form an inverse system, whose limit is the Tate mod-
ule T`Gm = lim←− µ`n(Ksep). This is a free Z`-moduel of rank 1, and it carries a representation of
GK induced by the actions on µ`n(Ksep). We also define V`Gm = Q` ⊗Z`

T`Gm, a 1-dimensional
Q`-vector space with GK action. In fact this representation is the `-adic cyclotomic character.

A common bit of nomenclature: we also write T`Gm = Z`(1) and V`Gm = Q`(1). If V is any
`-adic GK representation, then for any r ∈ Z we define a Tate twist of V by V(r) = V ⊗Q`(1)⊗r

(where we understand negative r to mean the corresponding tensor power of the dual).

Example. We can also consider the Tate module of an elliptic curve E/K given by T`E = lim←− E[`n],
and V`E = Q` ⊗Z`

T`E. This is a 2-dimensional `-adic GK representation

Example. More generally, if A/K is an abelian variety, then we define the Tate module similarly
as T`A = lim←− A[`n], the inverse limit of `n-torsion subgroups and multiplication-by-` maps, and
V`A = Q`⊗Z`

T`A. This is an `-adic GK-representation of dimension 2g, where g is the dimension
of A.

These examples are all special cases of the true source of `-adic representations, which is `-adic
étale cohomology. Briefly, consider the category of sheaves on the étale site of a scheme; we can
define cohomology functors in the usual way, as the right derived functors of the global sections
functor. Unfortunately non-torsion coefficients give strange results. But torsion coefficients work
fine, so we define non-torsion coefficients through an inverse limit instead. (For example, on
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complex varieties étale cohomology with finite coefficients is the same as singular cohomology
with finite coefficients, but this is not the case for integer coefficients.)

Let Y be a smooth proper variety over Ksep. Then we have cohomology groups Hi(Yét, Z/`n)
which are finite abeian groups killed by `n. The reduction maps Z/`n+1 → Z/`n induce an
inverse system

Hi(Yét, Z/`n+1)→ Hi(Yét, Z/`n),

and we define the `-adic étale cohomology of Y to be

Hi
ét(Y, Q`) = Q` ⊗Z`

lim←−Hi(Yét, Z/`n).

Furthermore, if X is a smooth proper variety over K (as opposed to Ksep), then Hi
ét(XKsep , Q`)

carries a GK action: GK acts on XKsep , which gives compatible actions on Hi(XKsep,ét, Z/`n), and
thus an action on Hi

ét(XKsep , Q`).

Example. The Tate module of an abelian variety A is a special case of this:

Hi
ét(AKsep , Q`) ∼=

∧i(V`A)∨.

Example. If C is a curve,

H1
ét(C, Q`) ∼= H1(Jac C, Q`) ∼= (V` Jac C)∨.

Example. If X = Pn
K, then

Hi
ét(XKsep , Q`) =

{
0 for i odd or i > 2n
Q`

(
−m

2
)

for 0 ≤ i ≤ 2n, i even.

2 Finite Fields

Now let K = Fq be a finite field of characteristic p. We have GK = Ẑ, topologically generated by
a geometric Frobenius element τ : x 7→ x1/p (inverse to the usual arithmetic Frobenius x 7→ xp).
Since our representations are continuous, they are determined by the image of τ. That is, for any
u ∈ GLn Q`, the assignment τ 7→ u extends to a representation ρ : GK → GLn Q` in at most one
way. Indeed, if a ∈ Ẑ and an ∈ Z a sequence converging to t, then ρ(a) is the (topological) limit
lim uan , if this limit exists.

Proposition. This limit exists if and only if the eigenvalues of u are `-adic units, that is, if Pu(t) =
det(u− t · id) ∈ Z`[t] and the constant term is a unit in Z`.

Definition. The characteristic polynomial of an `-adic GK representation ρ is det(id−t · ρ(τ)), the
characteristic polynomial of ρ(τ).

A representation ρ is semi-simple precisely when ρ(τ) is semi-simple, and so the characteristic
polynomial of ρ determines it up to semi-simplification.

Now we return to geometry. Let X be a smooth proper geometrically connected variety over
K. We define a ζ-function for X by

ζX(t) = exp

(
∑
n≥1

#X(Fqn)

n
tn

)
= ∏

x∈X
closed

1
1− tdeg x

(where deg x is the degree of the residue field at x over K).
Many of the properties of the étale cohomology of X can be understood as properties of its

ζ-function. The latter are the content of the Weil conjectures.
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Theorem. Let X, ζX as above, and let d be the dimension of X.

1. There are polynomials P0, . . . , P2d ∈ Z[t] such that

ζX(t) =
P1(t) · · · P2d−1(t)

P0(t)P2(t) · · · P2d(t)
.

2. There is a functional equation

ζX

(
1

qdt

)
= ±qdβt2βζX(t), β =

1
2

2d

∑
m=0

(−1)m deg Pm.

3. Over Z we have Pm(t) = ∏(1− αm,jt) where |αm,j| = qm/2 under any embedding Z→ C.

The idea is that Pm(t) is the characteristic polynomial of the GK representation Hm
ét(XKsep , Q`),

so the statements of the Weil conjectures correspond to statements about étale cohomology and
its GK action.

1. A Grothendieck-Lefschetz-type trace formula

#X(Fqn) = ∑
i
(−1)i tr(Frobqn , Hi

ét(XKsep , Q`)).

2. Poincaré duality.

3. Purity.

What do we mean by purity? A Weil number of weight w ∈ Z is an α ∈ Q such that qiα ∈ Z for
some i ∈N, and |α| = qw/2 under any embedding Q→ C. A Weil number α is effective if α ∈ Z.

An `-adic GK-representation is pure of weight w if all roots of the characteristic polynomial of τ
(i.e. Frobenius eigenvalues) are Weil numbers of weight w. Such a thing is effective if the Frobenius
eigenvalues are effective. Note that if V is pure of weight w then V(r) is pure of weight w− 2r,
since τ is multiplication by q−1 in the cyclotomic character. The purity part of the Weil conjectures
is the statement that Hm

ét(XKsep , Q`) is pure and effective of weight m.
Now we can state finite field versions of some big conjectures about Galois representations.
An `-adic GK representation V is geometric if it is semi-simple and decomposes V =

⊕
w∈Z Vw

where Vw is pure of weight w and almost all Vw = 0. An `-adic GK representation comes from
geometry if it is isomorphic to a subquotient of Hi

ét(XKsep , Q`) for some X and i.

Theorem. All geometric representations come from geometry.

Conjecture. All representations coming from geometry are geometric.

In fact in the finite field case it’s even known that representations coming from geometry are
pure, so the only thing remaining is to show they are semi-simple.

3 Local Fields

Now let K be a local field with residue field k of characteristic p, ring of integers OK, absolute
Galois group GK = Gal(Ksep/K), inertial subgroup IK, and wild inertia subgroup PK. (In the notes
we’re following a “local field” means a complete discrete valuation field with residue field perfect
of characteristic p; in particular, the residue field may not be finite.)
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Definition. Let ρ : GK → GLn Q` be an `-adic representation.

• ρ is unramified or has good reduction if ρ(IK) = {id}.

• ρ has potentially good reduction if ρ(IK) is finite, or equivalently, if there is a finite extension
K ⊂ K′ ⊂ Ksep so that ρ|GK′

has good reduction.

• ρ is semi-stable if ρ(IK) is unipotent, or equivalently, if the semi-simplification of ρ has good
reduction.

• ρ is potentially semi-stable if there is a finite extension K ⊂ K′ ⊂ Ksep so that ρ|GK′
is semi-

stable, or equivalently, if the semi-simplification of ρ has potentially good reduction.

There are a couple ways of describing all potentially semi-stable GK representations. The first
is through geometry.

Theorem. If µ`∞(K(ζ`)) is finite, then any `-adic GK representation is potentially semi-stable. In partic-
ular, this is true if the residue field k is finite, because µ`∞(K) ∼= µ`∞(k).

Note in particular that the usual notion of local field has a finite residue field, so in this case
the following theorems describe all `-adic GK representations.

Corollary (Grothendieck’s `-adic monodromy theorem). Let K be a local field. Then any `-adic
representation of GK coming from geometry is potentially semi-stable.

This is proven essentially by finding a model of X over a field K′ satisfying the hypotheses of
the Theorem, and showing that the action of GK comes from the action of GK′ .

Theorem. Assume the residue field k is algebraically closed. Then any potentially semi-stable `-adic
representation of GK comes from geometry.

First, assume the representation is semi-stable, do some reductions, and then show that it
comes from an elliptic curve. Then, assume that the representation is potentially semi-stable, so
that there’s a field extension K′ over which it’s semi-stable. Then take the elliptic curve that does
the job for K′ and Weil-restrict to K to get an abelian variety that does the job for K.

4 Weil-Deligne Representations

Let K remain a local field, but now suppose the residue field k is finite (i.e. a local field in the usual
sense). We describe another method for understanding potentially semi-stable GK-representations.
An essentially similar thing is possible for the more general notion of local field, but we restrict to
this case for simplicity.

We have an exact sequence

1→ IK → GK → Gk → 1

g 7→ g

and since k is finite it has Galois group Gk = Ẑ, topologically generated by the geometric Frobe-
nius τ.

Definition. The Weil group of K to be

WK = {g ∈ GK : g = τm for some m ∈ Z},
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the preimage in GK of Z ⊂ Ẑ = Gk. It sits in an exact sequence

1→ IK →WK
a→ Z→ 1.

Note also that WK is dense in GK.
The Weil-Deligne group of K is

WDK = WK n Ga

where the action is wxw−1 = q−a(w)x for w ∈WK, x ∈ Ga.
A Weil representation of K over a field F is a finite dimensional representation ρ : WK → GLn F

whose kernel contains an open subgroup of IK. A Weil-Deligne representation of K over F is a Weil
representation ρ together with a nilpotent endomorphism N of Fn satisfying

N ◦ ρ(w) = qa(w)ρ(w) ◦ N for all w ∈WK.

A morphism (D, N) → (D′, N′) of Weil-Deligne representations over F is an F-linear GK-
equivariant map η : D → D′ such that N′ ◦ η = η ◦ N. (Probably.)

Any `-adic representation of GK with potentially good reduction determines a Weil represen-
tation, simply by restriction to WK. Furthermore the GK representation is determined by the Weil
representation because WK is dense in GK. (Note that not any GK representation produces a Weil
representation, because a Weil representation is required to kill some inertia.)

An `-adic representation V of GK which is potentially semi-stable induces a Weil-Deligne
representation,

D = lim
H⊂IK

open normal

(Q`[u]⊗Q`
V)H , N : b⊗ v 7→ db

du
⊗ v

where the action on u is something like Q`(−1).

Theorem. There is an equivalence of categories

{potentially semi-stable GK representations} ←→ {Weil-Deligne representations of K}.

Let E, F be two fields of characteristic zero, and D (resp. D′) a Weil-Deligne representation
over E (resp. F). Then D, D′ are said to be compatible if for any field Ω and inclusions E → Ω,
F → Ω, we have

D⊗E Ω ∼= D′ ⊗F Ω

as Weil-Deligne representations over Ω.

Theorem. Let A be an abelian variety over K and `, `′ primes different from each other and from p. Then
V`(A), V`′(A) are compatible.

Conjecture. Let X be a smooth projective variety over K, with `, `′ as above. Then Hi
ét(XKsep , Q`) and

Hi
ét(XKsep , Q`′) are compatible.

Now we define “geometric” in the local field setting. Choose τ ∈ WK a lift of geometric
Frobenius from Gk, and let w be an integer.

Definition. A Weil representation over E is pure of weight w if all roots of the characteristic poly-
nomial of τ are Weil numbers of weight w. (This is independent of the choice of τ.)

If V is a Weil representation over E and r any natural number, then

D = V ⊕V(−1)⊕ · · · ⊕V(−r), N : D → D(−1)

(v0, v−1, . . . , v−r) 7→ (v−1, . . . , v−r, 0)
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is a Weil-Deligne representation.
A Weil-Deligne representation is elementary and pure of weight w + r if it is isomorphic to such

a D as above with V semi-simple and pure of weight w.
A Weil-Deligne representation is geometric and pure of weight m if it is a direct sum of elementary

and pure of weight m representations.

Geometric and pure of weight m Weil-Deligne representations form an abelian category.
As in the case of finite fields, we expect that representations coming from geometry are ge-

ometric, and geometric representations come from geometry. However, this case is not as well
understood as the finite field case.

Conjecture. For ` 6= p, the Weil-Deligne representation associated to Hi
ét(XKsep , Q`) is geometric and

pure of weight i− 2r. Furthermore, representations of this form generate the whole category.
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